545 research outputs found

    Chaotic dynamics of superconductor vortices in the plastic phase

    Full text link
    We present numerical simulation results of driven vortex lattices in presence of random disorder at zero temperature. We show that the plastic dynamics is readily understood in the framework of chaos theory. Intermittency "routes to chaos" have been clearly identified, and positive Lyapunov exponents and broad-band noise, both characteristic of chaos, are found to coincide with the differential resistance peak. Furthermore, the fractal dimension of the strange attractor reveals that the chaotic dynamics of vortices is low-dimensional.Comment: 5 pages, 3 figures Accepted for publication in Physical Review Letter

    Driven flux-line lattices in the presence of weak random columnar disorder: Finite-temperature behavior and dynamical melting of moving Bose glass

    Full text link
    We use 3D numerical simulations to explore the phase diagram of driven flux line lattices in presence of weak random columnar disorder at finite temperature and high driving force. We show that the moving Bose glass phase exists in a large range of temperature, up to its melting into a moving vortex liquid. It is also remarkably stable upon increasing velocity : the dynamical transition to the correlated moving glass expected at a critical velocity is not found at any velocity accessible to our simulations. Furthermore, we show the existence of an effective static tin roof pinning potential in the direction transverse to motion, which originates from both the transverse periodicity of the moving lattice and the localization effect due to correlated disorder. Using a simple model of a single elastic line in such a periodic potential, we obtain a good description of the transverse field penetration at surfaces as a function of thickness in the moving Bose glass phase.Comment: 5 pages, 4 figures, New title and minor changes in text and figures. Accepted for publication in Physical Review

    Critical behavior of plastic depinning of vortex lattices in two dimensions: Molecular dynamics simulations

    Full text link
    Using molecular dynamics simulations, we report a study of the dynamics of two-dimensional vortex lattices driven over a disordered medium. In strong disorder, when topological order is lost, we show that the depinning transition is analogous to a second order critical transition: the velocity-force response at the onset of motion is continuous and characterized by critical exponents. Combining studies at zero and nonzero temperature and using a scaling analysis, two critical expo- nents are evaluated. We find v\sim (F-F_c)^\beta with \beta=1.3\pm0.1 at T=0 and F>F_c, and v\sim T^{1/\delta} with \delta^{-1}=0.75\pm0.1 at F=F_c, where F_c is the critical driving force at which the lattice goes from a pinned state to a sliding one. Both critical exponents and the scaling function are found to exhibit universality with regard to the pinning strength and different disorder realizations. Furthermore, the dynamics is shown to be chaotic in the whole critical region.Comment: 8 pages, 6 figure

    Chaos and plasticity in superconductor vortices: a low-dimensional dynamics

    Full text link
    We present new results of numerical simulations for driven vortex lattices in presence of random disorder at zero temperature. We show that the plastic dynamics of vortices display dissipative chaos. Intermittency "routes to chaos" have been clearly identified below the differential resistance peak. The peak region is characterized by positive Lyapunov exponents characteristic of chaos, and low frequency broad-band noise. Furthermore we find a low fractal dimension of the strange attractor, which suggests that only a few dynamical variables are sufficient to model the complex plastic dynamics of vortices.Comment: 8 pages, 6 figures, accepted for publication in The Physical Review

    The elastic depinning transition of vortex lattices in two dimensions

    Full text link
    Large scale numerical simulations are used to study the elastic dynamics of two-dimensional vortex lattices driven on a disordered medium in the case of weak disorder. We investigate the so-called elastic depinning transition by decreasing the driving force from the elastic dynamical regime to the state pinned by the quenched disorder. Similarly to the plastic depinning transition, we find results compatible with a second order phase transition, although both depinning transitions are very different from many viewpoints. We evaluate three critical exponents of the elastic depinning transition. ÎČ=0.29±0.03\beta = 0.29 \pm 0.03 is found for the velocity exponent at zero temperature, and from the velocity-temperature curves we extract the critical exponent ή−1=0.28±0.05\delta^{-1} = 0.28 \pm 0.05. Furthermore, in contrast with charge-density waves, a finite-size scaling analysis suggests the existence of a unique diverging length at the depinning threshold with an exponent Îœ=1.04±0.04\nu= 1.04 \pm 0.04, which controls the critical force distribution, the finite-size crossover force distribution and the intrinsic correlation length. Finally, a scaling relation is found between velocity and temperature with the ÎČ\beta and ÎŽ\delta critical exponents both independent with regard to pinning strength and disorder realizations.Comment: 17 pages, 10 figure

    Analysis of Energy Consumption Performance towards Optimal Radioplanning of Wireless Sensor Networks in Heterogeneous Indoor Environments

    Get PDF
    In this paper the impact of complex indoor environment in the deployment and energy consumption of a wireless sensor network infrastructure is analyzed. The variable nature of the radio channel is analyzed by means of deterministic in-house 3D ray launching simulation of an indoor scenario, in which wireless sensors, based on an in-house CyFi implementation, typically used for environmental monitoring, are located. Received signal power and current consumption measurement results of the in-house designed wireless motes have been obtained, stating that adequate consideration of the network topology and morphology lead to optimal performance and power consumption reduction. The use of radioplanning techniques therefore aid in the deployment of more energy efficient elements, optimizing the overall performance of the variety of deployed wireless systems within the indoor scenario

    Magnetoresistance scaling in the layered cobaltate Ca3Co4O9

    Full text link
    We investigate the low temperature magnetic field dependences of both the resistivity and the magnetization in the misfit cobaltate Ca3Co4O9 from 60 K down to 2 K. The measured negative magnetoresistance reveals a scaling behavior with the magnetization which demonstrates a spin dependent diffusion mechanism. This scaling is also found to be consistent with a shadowed metalliclike conduction over the whole temperature range. By explaining the observed transport crossover, this result shed a new light on the nature of the elementary excitations relevant to the transport

    Response to tilted magnetic fields in Bi2Sr2CaCu2O8 with columnar defects: Evidence for transverse Meissner effect

    Full text link
    The transverse Meissner effect (TME) in the highly layered superconductor Bi2Sr2CaCu2O(8+y) with columnar defects is investigated by transport measurements. We present detailed evidence for the persistence of the Bose-glass phase when H is tilted at an angle theta < theta_c (T) away from the column direction: (i) the variable-range vortex hopping process for low currents crosses over to the half-loops regime for high currents; (ii) in both regimes near theta_c(T) the energy barriers vanish linearly with tan(theta) ; (iii) the transition temperature is governed by T_{BG}(0) -T_{BG}(theta) sim |tan(theta)|^{1/\nu_{\perp}} with \nu_{\perp}=1.0 +/- 0.1. Furthermore, above the transition as theta->\theta_c+, moving kink chains consistent with a commensurate-incommensurate transition scenario are observed. These results thereby clearly show the existence of the TME for theta < theta_c(T).Comment: 4 pages, RevTeX, 5 EPS figure
    • 

    corecore